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Abstract— Fast and accurate fault detection and isolation for
multiple faults is crucial for satellite navigation systems. How-
ever, conventional deletion-based greedy search methods suf-
fer from swamping effects, i.e., wrongly excluding healthy mea-
surements, which leads to degradation in positioning perfor-
mance after executing the isolation. This study proposes an in-
crementally expanding algorithm to isolate multiple faulty mea-
surements in the multi-constellation global navigation satel-
lite system positioning. The proposed algorithm is designed
to find the most consistent set by incrementally expanding
the minimum basic set with fault-free assumption. In each
iteration, the no-fault hypothesis testing is conducted on the
ordered studentized and jackknife residuals, enabling the cor-
rection of the fault-free assumption made in constructing the
minimum basic set. The isolation performance and its impacts
on positioning accuracy are evaluated in a worldwide simu-
lation. The proposed method shows a 26% reduction in the
swamping event rate and a 75% reduction in the mean post-
isolation positioning error, compared to the deletion-based
greedy search method. Through Monte Carlo simulations, the
stability of the proposed method regarding the number of
faults and the fault magnitude is demonstrated. An application
to the real-world dataset with artificially injected bias is also
studied, showing a reduced post-isolation positioning error.

Index Terms— Multiple faults, fault detection and isolation, satellite navigation, jackknife, hypothesis testing, greedy
search

I. INTRODUCTION

FAST and accurate fault detection and isolation (FDI) is
essential for satellite-based navigation systems in some

safety-critical applications [1]–[5]. Fault detection is a tech-
nology to check the occurrence of faults in the system, while
fault isolation aims to separate faulty measurements from
healthy measurements [6], [7]. In this paper, we define faults as
unmodelled measurement errors that substantially compromise
the positioning solution, such as non-line-of-sight (NLOS) er-
rors [4], [8], [9]. Those measurement errors that have relatively
smaller impacts and are induced by environments are regarded
as nominal measurement errors. Indeed, there is some intersec-
tion between the nominal measurement errors and the faults,
which makes it difficult to distinguish the difference in a sole
satellite-based positioning system. Therefore, the definition of
faults and nominal measurement error emphasizes the impacts
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of measurements on the positioning solution.In satellite nav-
igation research, the FDI technique can be roughly classified
into two categories, including the snapshot approaches and
sequential approaches. In snapshot approaches, measurements
in a single epoch are used to develop test statistics, which
can realize a fast detection of abrupt faults. In the sequential
approaches, measurements used to calculate the test statistic
are not limited to a single epoch. In addition, the sequential
approaches usually involve the integration of different types
of measurements, such as global navigation satellite system
(GNSS) and inertial navigation system (INS) measurements
[10], [11]. In this paper, we limit the scope to the snapshot
approaches that use standalone GNSS measurements.

In the early stage of satellite navigation with limited
satellites in operation, the snapshot FDI technique, such as
the range comparison method [12], chi-squared test detector
[13], parity space [14], [15], and the multiple hypothesis
solution separation detector [16] in the conventional receiver
autonomous integrity monitoring (RAIM) scheme [17], mainly
focuses on the single fault case. However, with the growing
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number of satellites and constellations, the probability of
simultaneous faults becomes nonnegligible. For example, mul-
tiple Global Positioning System (GPS) satellites experienced
high L1 single-frequency range errors of up to 16m due to an
erroneous ionospheric correction term between May 28 and
June 2, 2002 [18]. Moreover, in urban applications, multiple
pseudorange measurement faults frequently occur due to the
presence of multipath and non-line-of-sight (NLOS) signals.
These highlight the need for FDI techniques in handling
multiple faults [19]. In fact, researchers have already proposed
an optimal FDI algorithm under some assumptions [20]. This
algorithm involves evaluating the consistency of all sets of
measurements and selecting the best set with the highest level
of consistency. The implementation of this algorithm in the
navigation community can refer to the multiple-hypothesis so-
lution separation for multiple faults integrity monitoring [21].
Nevertheless, this algorithm relies on combinatorial search,
which becomes computationally intractable as the number
of measurements grows [20]–[22]. For example, 220 ∼ 106

sets have to be examined when considering all 10 or more
measurement combinations with 21 measurements in the three-
constellation setting. A detailed discussion of its computation
load in satellite navigation applications is given in [21].
Therefore, it is essential to develop methods that can achieve
combinatorial search performance at a lower computational
cost.

To overcome the exponentially increasing computation time
of exhaustive search algorithm, deletion-based greedy search
method have been proposed [21], [23]–[25]. Mathematically
speaking, the deletion-based greedy search method consis-
tently removes sets of measurements to reduce the properly
chosen statistic. For example, Blanch et al. [21] propose
the greedy search method by removing the measurement
with the largest normalized residual in an iterative process.
The algorithm stops when the weighted sum of square error
(WSSE) is below the consistency threshold. Hsu et al. [26]
propose the iterative consistency check method by excluding
the measurement that results in the largest reduction in the
WSSE. Knowles and Gao [22] propose the greedy Euclidean
distance matrix (EDM) algorithm, which iteratively eliminates
the largest average absolute value of the fourth and fifth
eigenvalues. The algorithm stops when the fault detection test
statistic falls below a given threshold. Although these deletion-
based methods produce competitive performances compared to
the exhaustive search method, they are unavoidably affected
by the swamping effect [27], i.e., healthy measurements are
incorrectly identified as faults, and tests based on them lose
their powers substantially in the presence of multiple outliers
[27], [28]. The swamping effect could be extraordinarily dan-
gerous because the exclusion operation reduces the redundancy
of healthy measurements, subsequently increasing the risk of
large positioning deviation.

In this study, an expanding-based greedy search method
is proposed for fast and accurate FDI in pseudorange-based
positioning systems. Unlike the mainstream deletion-based
greedy search methods, the proposed method incrementally
expands the measurement set until the faults are detected. Due
to its expanding nature, the proposed method is more resistant

to the swamping effect than the deletion approach. This idea is
not new, and some practices on the outlier-detection for linear
regression problems can be found in the statistic literature [29],
[30]. However, when it comes to the multiple fault isolation
problem in multi-constellation GNSS positioning systems,
some practical considerations need to be taken into account.
The unique characteristics of such systems, including the
heterogeneity of measurements from different constellations,
introduce new challenges that cannot be adequately addressed
by the existing practices in the statistical literature. More-
over, these studies [29], [30] mainly focus on the detection
performance and ignore the isolation effects on the estima-
tion results, e.g., the positioning error, which is extremely
important in positioning applications. Therefore, this study
aims to extend the incrementally expanding idea to detect
and isolate multiple fault measurements in multi-constellation
GNSS positioning systems, and to comprehensively analyze its
isolation performance and its impacts on positioning accuracy.
Specifically, the proposed algorithm starts with constructing a
minimum basic set, which has the minimum studentized resid-
ual computed based on full-set measurements. A grouping-
based approach considering the heterogeneity of different
constellations is proposed to sort the measurements according
to their studentized and jackknife residual. Then the basic
set is expanded with no-fault hypothesis testing by examining
the cut-off points of the ordered residuals. Since the no-fault
hypothesis testing is a multiple-testing problem, the Bonferroni
correction [31] is further applied to correct the threshold in
testing. The expanding process is repeated until a fault is
detected.

The proposed method is evaluated in a simulated experiment
to isolate multiple pseudorange faults for a set of users
distributed over the world during one day. In the worldwide
simulation experiments with nine injected faults and the mag-
nitude uniformly distributed in [−50m,−25m]∪[25m, 50m],
the proposed method exhibits a more than 26% reduction in
the mean swamping event rate, compared to the deletion-based
greedy search method [21]. In addition, the mean positioning
error of the proposed method is around 75% less than the
deletion-based greedy search method. Moreover, in the Monte-
Carlo simulation, the proposed method shows a more stable
performance than the greedy search method regarding the
number of faults and fault magnitude. The mean computation
time on the three-constellation setting is less than 30ms when
the number of faults ranges from 2 to 15, which is comparable
to the greedy search method. An application to the real-world
dataset with artificially injected bias is also studied, showing a
similar result to the simulation experiments. The contributions
of this study are two folds:

1) Propose an accurate and fast multiple fault isolation
algorithm for multi-constellation GNSS positioning sys-
tems. The expanding nature of the proposed method can
effectively prevent performance degradation by reducing
the events of wrong exclusion of healthy measurements;

2) Conduct extensive simulations and a real-world experi-
ment to demonstrate the improved isolation performance
and stability of the proposed method compared to the
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deletion-based greedy search method.

II. BACKGROUNDS ON STUDENTIZED RESIDUALS FOR
PSEUDORANGE-BASED POSITIONING SYSTEM

This section briefly introduces the construction of stu-
dentized and jackknife residuals for a pseudorange-based
positioning system, providing the theoretical basis for the
development of the proposed incrementally expanding fault
isolation algorithm in Section III.

A. Linearization of Pseudorange-based Positioning
Systems

A generalized linear system for pseudorange-based position-
ing can be written as

y = H∆x+ ε , (1)

where

y =

f
(
ρ1,x0

)
...

f
(
ρn,x0

)
 ,H=

h
(
{p1,j},x0

)
...

h
(
{pn,j},x0

)
 , ε =

ε1...
εn

 ,

∆x=x− x0 ,

(2)

f
(
ρi,x0

)
is a function of the ith measurement ρi (note

that ρi refers to a generalized measurement, not limited to
the pseudorange measurement) and the linearized point x0;
h
(
{pi,j},x0

)
is a vector function of the collection of satellite

positions {pi,j} related to the ith measurement and x0; x is
the receiver positioning state (an m × 1 vector); and εi is
the ith measurement error and is assumed to have a zero-
mean Gaussian distribution. Furthermore, it is assumed that
ε ∼ N (0, δ2Σ), where Σ is a diagonal matrix and δ is a
constant.

B. Studentized and Jackknife Residuals
Divide the full n measurements into two disjoint sets, i.e.,

the basic set B (containing s elements) and the non-basic set
O (containing n − s elements). In this paper, it is assumed
that the basic set is free of fault. Section III gives the details
of determining the basic set. Using measurements in the basic
set, the estimated receiver positioning state x̂B can be obtained
by implementing the weighted least square (WLS) method (in
an iterative approach) as follows:

∆x̂B=GByB (3a)
x̂B=x0 +∆x̂B , (3b)

where
GB =

(
HT

BWBHB
)−1

HT
BWB (4)

is the projection matrix, and WB = Σ−1
B is the weighting

matrix. The subscript B in (3) indicates that the corresponding
variable is defined with respect to the set B.

The studentized residual [32] in WLS can be derived as (a
detailed derivation is given in Appendix I):

ri =

√
wIB(i)yi −

√
wIB(i)hIB(i)∆x̂B

δ̂B
√
1− gIB(i)

, yi ∈ B , (5)

where yi is the ith element in the full set and belongs to B,
IB(·) is a function to identify the index of yi in B, wIB(i) is the
IB(i)th element on the diagonal of WB, hIB(i) is the IB(i)th
row of HB, gIB(i) is the IB(i)th element on the diagonal of
GB, and

δ̂B =

√(
yB −HB∆x̂B

)T
WB

(
yB −HB∆x̂B

)
s−m

(6)

is the estimation of δ using data in the basic set B. With
the Gaussian assumption ε ∼ N (0, δ2Σ) in Section II-A, the
studentized residual ri has a relationship to beta-distributed
variables as follows [32] :

r2i
s−m

∼ β
(1
2
,
s−m− 1

2

)
. (7)

The jackknife residual [33], [34] can be derived as (a
detailed derivation is given in Appendix I)

ti =

√
wiyi −

√
wihi∆x̂B

δ̂B

√
1 + wihi

(
HT

BWBHB
)−1

hT
i

, yi ∈ O , (8)

where wi is the ith element on the diagonal of W, and hi is
re-constructed based on the linearized point x0 as follows:

hi = h
(
{pi,j},x0

)
, yi ∈ O . (9)

The definition of h(·) can be found in (2). With the Gaussian
assumption ε ∼ N (0, δ2Σ) in Section II-A, the jackknife
residual has a t-distribution [34]:

ti ∼ t(s−m) . (10)

Both the studentized residual and the jackknife residual are a
dimensionless quantity that measures the difference between
the predicted and observed values of each yi. The proposed
incrementally expanding isolation algorithm will utilize these
residuals to identify potential faults.

III. INCREMENTALLY EXPANDING METHODS FOR
MULTIPLE FAULTS ISOLATION

The proposed algorithm aims to find the most consistent
set in an incrementally expanding approach. The proposed
algorithm mainly consists of two steps, including the minimum
basic set construction and the incrementally expanding with
no-fault hypothesis testing.

A. Constructing the minimum basic set
The proposed algorithm starts with constructing a minimum

basic set B with m+1 measurements, which has the minimum
studentized residual computed based on the full-set measure-
ments. Algorithm 1 shows the pseudocode of the construction
process. First, the full-set solution x̂ is calculated using all n
measurements (utilizing WLS in an iterative approach),

∆x̂=
(
HTWH

)−1
HTWy (11a)

x̂=x0 +∆x̂ , (11b)

where W = Σ−1 is the weighting matrix. For each mea-
surement, the corresponding studentized residual is calculated
according to (5) (lines 1–4). In this calculation, the basic set B
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is the full set. Then the n studentized residuals are ordered in
ascending order, and the first m+1 measurements are chosen
to construct the minimum basic set (lines 5–6).

As can be seen, the minimum basic set is constructed solely
based on the ranking of studentized residuals. For simple linear
regression problems, as the one in [29], the minimum basic
set can be directly used to calculate the jackknife residuals of
measurements out of the minimum basic set. However, for the
multi-constellation GNSS system, the minimum basic set may
only contain measurements from one or two constellations,
making it impossible to calculate the jackknife residual of
measurements from constellations that are not included in the
minimum basic set. This is because the calculation of the jack-
knife residual relies on the geometry matrix and the solution
obtained based on the minimum basic set, as shown in (8).
For example, assuming that the minimum basic set contains
measurements from the GPS and GALILEO constellations,
the solution obtained based on the minimum basic set is a
five-dimensional vector, consisting of the three-dimensional
positioning vector, the receiver clock bias from the GPS
constellation, and the receiver clock bias from the GALILEO
constellation. When calculating the jackknife residual of a
measurement from the GLONASS constellation, the term
∆x̂B in (8) involves the estimation of the three-dimensional
position and the receiver clock bias from the GLONASS
constellation. Unfortunately, the estimation of the receiver
clock bias from the GLONASS constellation is unknown;
therefore, it is impossible to calculate the jackknife residual
of measurement from the GLONASS constellation when the
minimum basic set does not contain measurements from the
GLONASS constellation.

To tackle this issue, the minimum basic set is augmented to
ensure that at least one measurement from each constellation is
included in the augmented minimum basic set. Specifically, the
measurements associated with the ordered studentized residu-
als are sequentially examined (line 9). The first measurement
from the constellation that is not included in the minimum
basic set is added to the minimum basic set (line 10). This pro-
cess is repeated until the minimum basic set contains at least
one measurement from each constellation. The augmentation
will add at most k−1 measurements into the original minimum
basic set, where k is the number of constellations of the GNSS
system. For example, at most two measurements will be added
to the minimum basic set in the three-constellation GNSS
system. The remaining measurements formalize the non-Basic
set O.

B. Incrementally expanding basic set with no-fault
hypothesis testing

In the second step, the minimum basic set is incremen-
tally expanded by the remaining measurements with no-fault
hypothesis testing until faults are detected. The minimum
basic set is expected to be free of faulty measurements,
which, however, is a strong assumption. Therefore, a remedial
philosophy is also integrated into the subsequent procedure
in case the assumption is violated. Algorithm 2 shows the
pseudocode of the expanding process.

Algorithm 1 Minimum Basic Set Construction

Input:
Measurements: Ξ = {y1, y2, · · · , yn}
Size of the positioning state: m

Output:
The minimum basic set: B
// Constructing the minimum basic set

1: for each yi ∈ Ξ do
2: Compute the studentized residual ti with Ξ ▷ Eq. (5)
3: T ← |ti|
4: end for
5: Order T in ascending order
6: B ← Elements in Ξ that corresponds to the top m + 1

elements in the ordered T
// Augmenting the minimum basic set

7: Γ = {Constellations not included in B}
8: for each γ ∈ Γ do
9: |ti| ← The smallest element in T from const. γ

10: B ← The measurement corresponding to |ti|
11: end for
12: Return B

1) The naive approach to expand the basic set: A naive
approach to expand the basic set is to arrange the mea-
surements in ascending order according to ti (yi ∈ B for
studentized residual, while yi ∈ O for jackknife residual) and
then select the first s + 1 ordered measurements as the new
basic set. Here, s is the size of the current basic set. This
approach is well-adopted in simple linear regression problems
[29], [35]. However, in the multi-constellation positioning
system, such the method ignores the fact that jackknife (or
studentized) residuals associated with different constellations
are heterogeneous, and hence not comparable.

The heterogeneity is primarily attributed to the usage of the
estimated receiver clock bias in the calculation of jackknife
and studentized residuals. Taking the jackknife residual in (8)
for example, the term hi∆x̂B in the numerator can be rewritten
as

hi∆x̂B = ei[x̂B, ŷB, ẑB]
T + δ̂

I(yi)
B (12)

where ei is the 1× 3 line-of-sight vector of the measurement
yi, [x̂B, ŷB, ẑB] is the estimated three-dimensional position
vector based on the basic set, and δ̂

I(yi)
B is the estimated

receiver clock bias of the constellation that yi comes from.
For two measurements from different constellations, their jack-
knife residuals use different estimations of the receiver clock
bias, each of which is calculated by the measurements from
the corresponding constellation in the basic set. Therefore,
only the jackknife residuals from the same constellation are
comparable as they use the same position and receiver clock
bias estimations. Similarly, the studentized residual also has
heterogeneity in the usage of receiver clock bias estimations.

2) The grouping-based approach to expand the basic set: To
tackle this heterogeneity issue, a grouping-based approach is
proposed to expand the basic set. First, the full set measure-
ments Ξ are grouped according to their constellations (lines
6–8). Within each group, ti (yi ∈ B for studentized residual,
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Algorithm 2 Incrementally Expanding Algorithm for Multiple
Faults Isolation
Input:

Measurements: Ξ = {y1, y2, · · · , yn}
Size of the positioning state: m
Number of measurements: n
Upper limit of the type I error for an individual test: α

Output:
Set of faulty measurements: F
// Construction of the minimum basic set

1: The minimum basic set: B ← Algorithm 1 with Ξ,m
2: s← Size of B
3: while s+ 1 < n do

// Grouping-based expanding
4: Construct the non-basic set: O = Ξ \ B
5: S = ∅ ▷ Initialize the set for hypothesis testing
6: Γ = {Constellations included in B}
7: for each γ ∈ Γ do
8: Ξγ ← Measurements from constellation γ in Ξ
9: Bγ ← Measurements from constellation γ in B

10: for each yi ∈ Ξγ do
11: if yi ∈ B then
12: ti ← Studentized residual on B ▷ Eq. (5)
13: else
14: ti ← Jackknife residual on B ▷ Eq. (8)
15: end if
16: Tγ ← |ti|
17: end for
18: Order Tγ in ascending order
19: S ← Elements in Ξγ corresponding to the top |Bγ |

elements in the ordered Tγ
20: end for
21: S ← The element in Ξ \ S corresponding to the

smallest |ti|
// No-fault hypothesis testing

22: for each yi ∈ S do
23: if yi ∈ {yi|yi ∈ S, yi ∈ B} and (13a) is true then
24: go to line 33
25: end if
26: if yi ∈ {yi|yi ∈ S, yi /∈ B} and (13b) is true then
27: go to line 33
28: end if
29: end for
30: B = S ▷ Update the basic set
31: s← Size of B
32: end while
33: Return F = {yi|yi /∈ S}

while yi ∈ O for jackknife residual) is calculated for each
measurement (lines 10–17). Taking the group Ξγ for example,
where all measurements come from the constellation γ, the
measurements in that group are arranged in ascending order
according to |ti|, and the first |Bγ | measurements are added to
the no-fault candidate set S for hypothesis testing in Section
III-B.3 (lines 18–19). Here, Bγ is the set of measurements
from constellation γ in the current basic set B, and |Bγ | is its

size. Finally, in the remaining measurements Ξ \ S, the one
has the smallest ti are selected to expand the candidate set S
(line 21).

The grouping-based expanding approach ensures that the
no-fault candidate set S contains at least the same number of
measurements as the current basic set B for each constellation,
preventing the number of constellations from decreasing. The
maintenance of the number of constellations is essential,
as will be shown in the subsequent procedure. Moreover,
as the set S is constructed by measurements that have the
smallest |ti|’s in each group (lines 7–21), |ti|’s of non-basic set
elements could be smaller than those of the basic set elements.
Therefore, some elements of the basic set may be eliminated
during this process. Recall that the free-of-fault assumption is
made in constructing the minimum basic set in Section III-
A. This assumption is gradually repaired by this re-ordering
mechanism.

3) No-fault hypothesis testing: The no-fault candidate set S
is employed for the following no-fault hypothesis testing:

H0: No faults in S
H1: At least one fault exists in S .

The above testing aims to examine whether S is consistent
with the current basic set B. If H0 is not rejected, the basic set
will be augmented by the set S , which implies the expanding
nature of the algorithm.

The set S contains both basic and non-basic set elements,
and therefore they should be examined separately. Specifically,
the measurements in S are divided into two parts, i.e., SB =
{yi|yi ∈ S, yi ∈ B} and SO = {yi|yi ∈ S, yi /∈ B}. The
following statements are examined (lines 21–28),

max |ti|2

s−m
≥β−1

1
2 ,

s−m−1
2

(
1− α

s+ 1

)
, yi ∈ SB (13a)

max |ti| ≥t−1
s−m

(
1− α

2(s+ 1)

)
, yi ∈ SO , (13b)

where s+1 is the size of S , and α is the upper limit of the type
I error for an individual test. The above testing is a multiple
testing problem, and therefore the Bonferroni correction [31] is
applied when setting the testing threshold. The type I error for
an individual test ranges from α

s+1 to α due to the Bonferroni
correction [31]. By examining the above statements, we have
the following two situations:

1) If at least one of the statements in (13) is examined to
be true, H0 is reject (lines 23 –28). Then measurements
yi /∈ S are claimed to be outliers, and the algorithm
stops;

2) Otherwise, S is regarded as the new basic set (line 30),
and we repeat the process in Section III-B until n =
s+ 1.

Note that in the second situation, S is regarded as the new
basic set. Since the grouping-based expanding approach in
Section III-B.2 maintains the number of constellations in
S, it is possible to calculate the jackknife residual of any
measurement based on the new basic set (i.e, S) in the next
iteration (line 14).
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IV. ISOLATION AND POSITIONING PERFORMANCE WITH
WORLDWIDE SIMULATIONS

A. Experiment Setting and Evaluation Metrics
The proposed method is employed to isolate multiple faults

for a set of users distributed over the world during one
day. The MATLAB algorithm availability simulation tool
(MAAST) developed at Stanford University [36], is utilized
to simulate the dual frequency pseudorange measurements,
satellite positions, and user locations. Specifically, we inves-
tigate the case of three constellations (the 24-satellite GPS
constellation, the 30-satellite Galileo constellation, and the
23-satellite GLONASS constellation) and four constellations
(the aforementioned three constellations and a 27-satellite
BEIDOU constellation) in simulating satellite positions. The
users are placed on a grid every 10 degrees longitude and
latitude (which gives 648 locations). For each location, the
geometries are simulated every 5 minutes (which gives 288
time steps). The measurement error is simulated as the zero-
mean Gaussian distribution with the same configuration in
[37]. For each time and user location, a given number of
measurements are randomly chosen for additional bias injec-
tion. Each bias is generated from a uniform distribution. The
experiment setting is summarized in Table I. The following
will focus on the results of the three-constellation experiment.
Additional results of the four-constellation experiments can be
found in Appendix III.

TABLE I: Parameters of worldwide simulations with three
constellations

Constellations Number of faults Fault magnitude Alpha

GPS, Galileo,
GLONASS

9 [−50m,−25m] ∪
[25m, 50m]

0.05

In order to evaluate the performance of the fault isolation
algorithm, three kinds of events are defined by examining
the isolation results, including the exactly correct detecting,
swamping, and masking events, as follows:
(1) Exactly correct detecting event

All faulty measurements are correctly separated from nomi-
nal measurements. The rate of exactly correct detecting events
can be defined as

P1 =
Number of exactly correct detecting events

Total epochs
. (14)

(2) Swamping event
At least one nominal measurement is incorrectly identified

as a fault. The rate of swamping events can be defined as

P2 =
Number of swamping events

Total epochs
. (15)

(3) Masking event
None of the faulty measurements are identified. The rate of

masking events can be defined as

P3 =
Number of masking events

Total epochs
. (16)

For each user location, P1, P2, and P3 are calculated. A
good detector is expected to have a high value of P1 and

a low values of P2 and P3. In addition, positioning accuracy
is also an important issue regarding the context of satellite
positioning. Therefore, the positioning error after the fault
isolation process, i.e., the post-isolation positioning error, is
calculated. A good detector for satellite positioning systems
shall produce small post-isolation positioning errors.

B. Fault Isolation Performance Comparison
The proposed method is compared with the deletion-based

greedy search algorithm [21]. At each step, the greedy search
algorithm removes the measurement with the largest normal-
ized residual. The algorithm stops when the weighted sum of
square error is below the consistency threshold. A detailed
introduction is given in Appendix II.

Table II summarizes the rate of the three kinds of events.
Both methods have similar performance regarding the exact
correct detecting event rate. Surprisingly, the deletion-based
greedy search method has a significantly low masking event
rate, which means that at least one faulty measurement can
be identified by this method. However, the proposed method
cannot guarantee this property because it is designed to find the
largest consistency set. Nevertheless, this design philosophy
actually benefits the positioning system in terms of position-
ing accuracy, which will be seen in Section IV-C. Actually,
this benefit is reflected by its low swamping event rate, as
shown in Tables II. The mean swamping event rate of the
proposed method is only 8.78%, which is 26% less than
that observed in the deletion-based greedy search method.
Notably, the maximum swamping event rate of the deletion-
based greedy search method is around 58%, indicating that
healthy measurements are frequently excluded. This could be
very dangerous because the exclusion operation reduces the
redundancy of healthy measurements, subsequently increasing
the risk of large positioning deviation.

TABLE II: Isolation performance in the three-constellation
experiment

Incrementally expanding Deletion-based greedy search

Event Exact Swamping Masking Exact Swamping Masking

Max 92.71 % 14.24 % 20.14% 87.85% 57.99% 0 %

Mean 80.22 % 8.78 % 8.00% 64.73% 35.24% 0 %

Min 61.11 % 4.86 % 0.69% 42.01% 12.15% 0 %

C. Post-isolation Positioning Performance Comparison
To understand the effects of swamping events, we plot the

map of post-isolation positioning error for both methods, as
shown in Fig. 1. The value plotted is the 99.5 percentile of all
the post-isolation positioning error values computed at a given
location over the course of a day. In most user locations, the
99.5 percentile post-isolation positioning error of the deletion-
based greedy search method is larger than 80m, as shown in
Fig. 1b. Moreover, in a considerable number of user locations,
this value even surpasses 100m. However, the 99.5 percentile
post-isolation positioning error of the proposed method is less
than 60m at most locations, as shown in Fig. 1a. Finally,
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it is interesting to find that the post-isolation positioning
error of both methods in the high-latitude region is much
smaller than that in the low-latitude region. The main reason
is that there are more visible satellites in the high-latitude
region [38], which provides more measurement redundancy.
Since both the deletion-based and the expanding-based greedy-
search FDI methods are designed to find the most consistent
subset of measurements, an enlarged measurement redundancy
can improve the detection and isolation performance given a
fixed number of faults.
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Fig. 1: 99.5 percentile of the post-isolation positioning error
over the course of the day yielded by (a) the incrementally
expanding algorithm and (b) the deletion-based greedy search
algorithm in the worldwide simulation experiment with three
constellations.

The statistics of the post-isolation positioning error of
all location-time combinations are summarized in Table III.
Notably, the maximum post-isolation positioning error of the
deletion-based greedy search method is 7.62 × 1013 m. On
the contrary, the maximum post-isolation positioning error of

TABLE III: Statistics of the post-isolation positioning error
for all location-time combinations in the three-constellation
experiment

Incrementally expanding Deletion-based greedy search

Max Mean Min Max Mean Min

181.58 m 2.28 m 0.01m 7.62× 1013 m 9.15m1 0.01m

1 The mean value is calculated without samples whose positioning error is
larger than 1.000m.

the proposed method retains a reasonable value of 181.58m.
Expect the maximum value, the mean post-isolation position-
ing error is also an important metric to evaluate the posi-
tioning performance of fault isolation algorithms. However,
the mean post-isolation positioning error of the deletion-based
greedy search method can be affected by samples that have
excessively large post-isolation positioning errors, making it
less representative to describe the average positioning perfor-
mance of the deletion-based greedy search method. Therefore,
samples that have positioning errors larger than 1.000m are
manually excluded before calculating the mean post-isolation
positioning error of the deletion-based greedy search method.
This process excludes 12 samples and the resulting mean
post-positioning error of the deletion-based greedy search
method is 9.15m. Nevertheless, the proposed method yields
a significantly smaller mean post-isolation positioning error,
achieving a 75% reduction. This phenomenon is actually
reflected by the 99.5% post-isolation positioning error map
in Fig. 1.

V. STABILITY AND EFFICIENCY ANALYSIS WITH MONTE
CARLO SIMULATION

This section investigates the stability and efficiency of the
proposed incrementally expanding algorithm by conducting
the Monte Carlo simulation. In the stability analysis, we inves-
tigate the impacts of the number of faults and fault magnitude
on the isolation and post-isolation positioning performance
of the proposed method and compare it with the deletion-
based greedy search algorithm. In the efficiency analysis, we
calculate the computation time of the proposed method against
the number of faults.

A. Impacts of the Number of Faults
This section investigates the impacts of the number of faults

on the isolation and post-isolation positioning performance of
the proposed method. The Monte Carlo simulation is con-
ducted by implementing the proposed method against different
numbers of faults. Specifically, the satellite geometry that con-
tains the largest number of satellites in the worldwide simula-
tion experiment is adopted, as shown in Fig. 2. Then N satel-
lites (measurements) are randomly selected for additional bias
injection, where each bias is generated from a uniform distri-
bution in the interval [−50m,−25m]∪[25m, 50m]. We study
the cases of N = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
and for each case of N , we conduct 10,000 simulations. The
simulation parameters are listed in the “case A” row in Table
IV.
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Fig. 2: Sky plots of the satellite geometry that contains the
largest number of satellites in the worldwide simulation.

TABLE IV: Parameters of Monte Carlo simulations

Cases Satellite ge-
ometry

Number
of faults

Fault magnitude

A Fig. 2 N1 [−50m,−25m] ∪ [25m, 50m]

B Fig. 2 9 [−M2 m,−M
2

m]∪[M
2

m,M m]

1 N = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}.
2 M = {5, 10, 20, 30, 40, 50, 65, 80, 100}.

Fig. 3 shows the three event rates and the post-isolation
positioning error of the proposed algorithm against the num-
ber of faults. The deletion-based greedy search algorithm is
also implemented in the same procedure, and its results are
summarized in Fig. 3 for comparison. With the increase in the
number of faults, the exactly correct detecting event rate of
both methods shows a decreasing trend. Both methods have a
nearly constant swamping event rate when N < 9. However,
when N exceeds 9, the swamping event rate of the proposed
method experiences a significant decrease. This phenomenon
can be explained by the expanding nature of the proposed
method. When the number of faults is quite large, there is a
high probability for a faulty measurement to be absorbed into
the basic set during the expanding process. Moreover, since
the proposed method is designed to find the largest consistency
set, the expanding process tends to absorb more nominal mea-
surements to balance the impacts of fault measurements on the
inner-set consistency. Therefore, the proposed method has less
chance to exclude nominal measurements, thereby achieving
a smaller swamping event rate. Since the proposed method
tends to retain some faulty measurements instead of excluding
them when the number of faults is significant, the positioning
system can use more measurements for positioning solution,
which actually prevents the system from geometry collapse.
As illustrated in Section III, the proposed method is designed
to find the largest consistency set. This design philosophy
actually avoids the situation of geometry collapse, where the
set shows the most inconsistency (accompanied by excessive
positioning error). However, the deletion-based method always
excludes the suspected faulty measurement with respect to the
current measurement set, even if the current measurement set
is dominated by faulty measurements. Therefore, the deletion-
based greedy search method would experience performance

degradation when the number of faults increases, as indicated
by Fig. 3(b) and Fig. 3(d). When N > 9, the swamping event
rate of the deletion-based greedy search algorithm increases
sharply, and its post-positioning error becomes significantly
larger than that of the proposed method.

B. Impacts of the Magnitude of Faults
In this section, we further study the impacts of fault

magnitudes on the isolation and post-isolation positioning
performance of the proposed method. A similar simulation
procedure is conducted, but the variable of interest becomes
the magnitude of faults. Using the geometry in Fig. 2, we ran-
domly select nine satellites (measurements) for additional bias
injection. Each bias is generated from a uniform distribution
in the interval [−M m,−M

2 m]∪ [M2 m,M m]. We study the
cases of M = {5, 10, 20, 30, 40, 50, 65, 80, 100}, and for each
case of M we conduct 10,000 simulations. The simulation
parameters are listed in the “case B” row in Table IV.

Fig. 4 plots the simulation results. As can be seen, with the
increase in fault magnitude, both methods show similar trends
in the exactly correct detecting event rate. On the swamping
event rate, the proposed method consistently maintains a small
value, suggesting that the proposed method is less likely to ex-
clude healthy measurements regardless of the fault magnitude.
However, the greedy search method shows a large swamping
rate in the cases of small-magnitude faults. With the increase
in fault magnitude, the swamping rate of the greedy search
method shows a decreasing trend. This could be explained by
the mechanism of the deletion-based greedy search method
that the increase in fault magnitude enlarges the difference
between faulty and healthy measurements, thereby making it
easier for the greedy search method to find the measurement
that shows the most inconsistency with other measurements.
Notably, the deletion-based greedy search method maintains
zero masking event rate through all cases of fault magnitude.
The proposed method has a large masking event rate when
the injected faults have small magnitudes. Fig. 4(d) shows
the change in the post-isolation positioning error of both
methods. Although both methods show an increasing trend
in the mean post-isolation positioning error, the magnitude of
the positioning error remains within a small range, and the
performance of both methods is comparable. It is interesting
to find that the 99.5% post-isolation positioning error of both
methods shows a decreasing trend, which is opposite to the
trend of their mean post-isolation positioning errors. This
phenomenon actually indicates a trade-off between isolation
performance and post-positioning performance in terms of
fault magnitude. Although the increase in fault magnitude
makes it easier to detect and isolate faults, an undetected
fault with a large magnitude (which could occur because
the exact correct detection rate is not 1) can cause greater
damage to positioning accuracy; therefore, the mean post-
isolation positioning errors would increase. On the contrary,
small-magnitude faults are difficult to isolate but cause smaller
impacts on positioning accuracy. Nevertheless, the events in
which multiple faults are undetected are more frequent than
the large magnitude situations. These events are occasional,
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Fig. 3: The (a) exactly correct detecting event rate; (b) swamping event rate; (c) masking event rate; (d) mean post-isolation
positioning error of two methods against the number of simulated faults with 3 constellations and fault magnitude uniformly
distributed in [−50m,−25m]∪ [25m, 50m]. The blue and orange shaded areas in (d) are the 2.5% ∼ 97.5% percentile region
of the post-isolation positioning error for the incrementally expanding and deletion-based greedy search methods, respectively.

Fig. 4: The (a) exactly correct detecting event rate; (b) swamping event rate; (c) masking event rate; (d) mean post-isolation
positioning error (the shaded area is bounded by the 2.5% percentile and the 97.5% percentile of the positioning error) of two
methods against the magnitude of simulated faults with 3 constellations and 9 simultaneous faults. The blue and orange shaded
areas in (d) are the 2.5% ∼ 97.5% percentile region of the post-isolation positioning error for the incrementally expanding
and deletion-based greedy search methods, respectively.
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and their impacts are reflected by the increase of the 99.5%
post-isolation positioning error, as shown in Fig. 4(d).

Given the results in Section V-A and Section V-B, the pro-
posed algorithm shows a more stable performance in isolation
and post-isolation positioning accuracy against the change in
the number of faults and the fault magnitude when comparing
to the deletion-based greedy search algorithm.

C. Analysis of Computation Complexity
This section analyzes and evaluates the time complex-

ity of the proposed incrementally expanding algorithm. The
proposed method consists of two algorithms, including the
minimum basic set construction algorithm (Algorithm 1) and
the incrementally expanding Algorithm for multiple faults
isolation (Algorithm 2). In Algorithm 1, the “for” loop in lines
1–4 involves matrix operations, while lines 5–11 only consist
of simple sorting operations (lines 5 and 9) and assignment
operations (lines 6,7, and 10). Therefore, the main computation
burden of Algorithm 1 is borne by the “for” loop in lines
1–4. The time complexity of Algorithm 1 can be regarded as
O(n). Similar to Algorithm 1, the main computation burden
of Algorithm 2 is born by matrix operations (lines 12 and
14). The other operations include simple sorting operations
(line 18), assignment operations (lines 2, 4–6, 8–9, 16, 19, 21,
and 30–31), and obtaining the inverse of standard distributions
(lines 23 and 26). The “for” loop in lines 7–20 computes
the studentized or Jackknife residual for each measurement
and sorts these residuals in a grouping-based manner. In each
group, the computation of residuals has a time complexity
of O(αin) (lines 10–17), where αi < 1. Therefore, the
time complexity of the “for” loop in lines 7–20 is given by∑

iO(αin) = O(n). Since the “while” loop in lines 3–32 has
at most n−m+ 1 iterations, the worst-case time complexity
of this “while” loop can be calculated by

∑n−1
s=m+1O(n) =

O(n2). Finally, the worst-case time complexity of Algorithm
2 is given by the summation of Algorithm 1 (line 1) and the
“while” loop (lines 3–32), i.e., O(n) +O(n2) = O(n2).

Except for analyzing the worst-case time complexity, an
additional analysis of the time complexity regarding the num-
ber of faults is conducted. Assuming that there are k faulty
measurements and the proposed method can exactly isolate
these faults, then the “while” loop in lines 3–32 of Algorithm
2 will have n−m+1−k iterations. At this condition, the time
complexity of this “while” loop is given by

∑n−1−k
s=m+1O(n) =

O ((n− k)n). Then, the time complexity of Algorithm 2 is
given by O(n)+O ((n− k)n) = O ((n− k)n). Notably, this
time complexity decreases with the increase of the number of
faults k, which will be shown in the following experiments.

A Monte Carlo simulation is conducted to evaluate the
computation time of the proposed method against the number
of faults. To evaluate as many cases as possible, we adopt
the geometry that contains the largest number of satellites
in the worldwide simulation experiment, i.e., Fig. 2, for the
experiment. Other configurations and the simulation procedure
are the same as in Section V-A. For each number of faults,
we conduct 10,000 simulations. All the computations are
conducted using a laptop (Intel Core i7-12700H CPU, 2.30
GHz).

TABLE V: Computation time comparison in the three-
constellation experiment

Number
of faults

Proposed Greedy
search

Number
of faults

Proposed Greedy
search

2 27.64ms 1.94ms 9 20.96ms 6.65ms

3 28.05ms 2.73ms 10 19.89ms 7.28ms

4 27.54ms 3.49ms 11 18.78ms 8.02ms

5 25.87ms 4.10ms 12 17.90ms 8.62ms

6 24.75ms 4.78ms 13 17.43ms 9.37ms

7 23.45ms 5.41ms 14 17.12ms 10.40ms

8 22.14ms 6.02ms 15 17.11ms 11.26ms

Table V compares the mean computation time of the
proposed algorithm with the deletion-based greedy search
algorithm for each number of faults. As can be seen, the
mean computation time of the proposed algorithm is less
than 30ms for all cases, which is computationally efficient
but slightly worse than the deletion-based greedy search algo-
rithm. Moreover, the mean computation time of the proposed
algorithm shows a decreasing trend with the increase in the
number of faults, which reflects the expanding nature of the
proposed algorithm. When the number of faults is large, the
proposed methods require less expansion to find the cut-off
point, as shown in (13). Therefore, the computation time is
reduced with the increase in the number of faults. In contrast,
the computation time of the deletion-based greedy search
algorithm increases with the increase in the number of faults.
This is because its time complexity is an increasing function
of the number of faults, as illustrated in Appendix II.

VI. APPLICATION TO REAL-WORLD DATA WITH
ARTIFICIALLY INJECTED BIAS

A. Experiment Setting
This section examines the performance of the proposed

method using reference station data from the Continuously
Operating Reference Stations (CORS) website. Specifically,
observation data from January 1st, 2023 are collected from
the station CHTI at an interval of 30 seconds. Both single-
frequency and dual-frequency (ionosphere-free combination)
observations from three satellite constellations – GPS, Galileo,
and GLONASS are considered. The position of the reference
station is obtained from the RINEX file header, and the satel-
lite position is calculated based on the broadcast ephemeris
from NASA’s Archive of Space Geodesy Data website [39]
by utilizing RTKLIB [40]. The single-frequency pseudorange
measurement is corrected by clock bias correction, ionospheric
corrections, and tropospheric corrections based on RTKLIB
[40] with the broadcast ephemeris [39], while the dual-
frequency pseudorange measurement is corrected by clock bias
correction and tropospheric corrections. Since the pseudorange
data are retrieved every 30 seconds, we have 2,880 epochs in
total. At each epoch, six measurements are randomly chosen
for additional bias injection. Each bias is generated from a
uniform distribution. The experiment setting is summarized in
Table VI.
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TABLE VI: Parameters of real-world data experiments with
artificially injected bias

Case Constellations Number
of faults

Fault magnitude Alpha

Single-
frequency

GPS, Galileo,
GLONASS

6 [−50m,−25m]∪
[25m, 50m]

0.05

Dual-
frequency

GPS, Galileo,
GLONASS

6 [−50m,−25m]∪
[25m, 50m]

0.05

B. Performance Comparison
Table VII summarizes the rates of the three kinds of events

in the case of single-frequency measurements. Similar to the
worldwide simulation experiments, both methods have similar
performance regarding the exact correct detecting event rate.
The masking rate of the deletion-based greedy search method
is nearly zero due to its deletion nature, which is remark-
ably smaller than that of the proposed method. However,
the proposed method yields a significantly smaller swamping
rate than that of the deletion-based greedy search method,
achieving a 16.49% reduction. Similar results are found in the
results of the dual-frequency case, as shown in Table VIII. The
swamping rate of the proposed method is 28.5% smaller than
that of the deletion-based greedy search method. However,
the exactly correct detecting event rate of both methods is
notably smaller than that in the single-frequency case. A
possible reason is that the ionosphere-free combination of
two frequency measurements increases the multipath and code
noises at the receiver end. Since the model of the multipath
and code noises is not 100% accurate, the ionosphere-free
combination enlarges the impacts of the inaccurate model of
multipath and code noises on the estimation and fault isolation
process, thereby reducing the exactly correct detecting event
rate of both fault isolation methods.

TABLE VII: Isolation performance of real-data experiment
with single-frequency measurements

Method Exactly correct Swamping Masking

Incrementally expanding 45.28% 33.99 % 17.19%

Deletion-based greedy search 49.06% 50.48% 0.03%

TABLE VIII: Isolation performance of real-data experiment
with dual-frequency measurements

Method Exactly correct Swamping Masking

Incrementally expanding 2.89% 62.14 % 20.21%

Deletion-based greedy search 8.82% 90.64% 0.21%

Fig. 5(a) shows the cumulative distribution function (CDF)
of the post-isolation positioning error of each method in the
case of single-frequency measurements. As can be seen, the
CDF curve of the proposed method is consistently above that
of the deletion-based greedy search method, indicating that the
proposed method has a higher probability of producing small
post-isolation positioning errors than the deletion-based greedy
search method. A similar trend is found in the dual-frequency

case, as shown in Fig. 5(b). In statistics, the mean post-
isolation positioning error of the proposed method is 31.97m,
which is 15.5% less than that of the deletion-based greedy
search method (37.84m) in the single-frequency case; the
mean post-isolation positioning error of the proposed method
is 57.1m, which is 14.8% less than that of the deletion-
based greedy search method (67m). Again, the mean post-
isolation positioning error of both methods is larger than that
in the single-frequency case, which is potentially explained by
the impacts of the enlarged multipath and code noises in the
ionosphere-free combination.
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Fig. 5: CDF of the post-isolation positioning error of the two
fault isolation methods in the (a) single-frequency and (b)
dual-frequency cases.

VII. CONCLUSION AND FUTURE WORK

This study proposes an expanding approach for detecting
and isolating multiple faults in multi-constellation GNSS
systems. The proposed method is designed to find the most
consistent set by incrementally expanding the minimum ba-
sic set, which is constructed by the measurements with the
smallest studentized residuals. In each expanding process, a
grouping-based approach is developed to order measurements
according to their studentized residuals and jackknife resid-
uals. The heterogeneity of residuals associated with different
constellations is considered in this approach. Subsequently, the
no-fault hypothesis testing is conducted on the cut-off point of
the expanded set. The expansion stops when a fault is detected.

The isolation performance of the proposed method and its
impacts on positioning accuracy are examined in the world-
wide simulations. Compared to the deletion-based greedy
search method, the proposed method reduces the mean swamp-
ing event rate by more than 26%, suggesting that the proposed
method is less likely to exclude healthy measurements. In
addition, the mean post-isolation positioning error is reduced
by 75%, which implies that the exclusion behavior of the pro-
posed method causes less damage to the positioning system.
The stability of the proposed method regarding the number
of faults and fault magnitude is analyzed based on Monte
Carlo simulations. Results show that the proposed method
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has a more stable isolation and post-isolation positioning
performance than the deletion-based greedy search method.
Moreover, the computation load is comparable to the deletion-
based greedy search method, suggesting its applicability in
real-time positioning systems. An application to the real-world
dataset with artificially injected bias is studied, where the
proposed method yields a smaller swamping event rate and
post-isolation positioning error than the deletion-based greedy-
search method.

This study also has limitations, which also point out future
research directions. As suggested by Table II, one of the
main limitations of the proposed method is the high masking
event rate when compared to the deletion-based greedy-search
method. This value could be large when the number of faults
increases or the faults have a small magnitude, as suggested
by Fig. 3 and Fig. 4, respectively. In both cases, the minimum
basic set is more likely to contain faulty measurements.
Moreover, in the small-fault-magnitude case, it is difficult for
the no-fault hypothesis testing to identify these faults, which
slightly differ from healthy measurements. The key seems
to be the construction of a fault-free minimum basic set.
A possible solution could be integrating the deletion-based
greedy search method that has excellent performance in the
masking event rate into the construction of the minimum basic
set, which will be the main focus of our future work.

APPENDIX I
STUDENTIZED AND JACKKNIFE RESIDUALS

Define ỹ, H̃, and ε̃ as follows:

ỹ = Σ− 1
2y, H̃ = Σ− 1

2H, ε̃ = Σ− 1
2 ε , (17)

where Σ− 1
2 is the squared root of Σ−1, and is obtained by the

Cholesky decomposition of Σ−1. The linearized pseudorange-
based positioning System in (1) can be transferred to the
following linear system:

ỹ = H̃∆x+ ε̃ , (18)

where ε̃ ∼ N (0, δ2). The new system can be solved by the
ordinary least square (OLS), and its solution is the same as
that of (1). The studentized and jackknife residuals will be
derived based on the new system.

A. Studentized Residual
Similar to the definition of the basic set in Section II-B,

we define the basic set B (containing s measurements) in the
new linear system and use the same symbol to simplify the
notations. The measurement residual ε̂B on B can be written
as:

ε̂B = ỹB − H̃B∆x̂ = (I− G̃B)ỹB , (19)

where
G̃B = H̃B(H̃

T
BH̃B)

−1H̃T
B (20)

is the projection matrix. Then ε̂B has a multi-variate Gaussian
distribution N (0, (I − G̃B)δ

2). For the ith measurement in
the full set and belongs to B, its residual ε̂i has a marginal
Gaussian distribution N (0, (1− g̃IB(i))δ

2), where g̃IB(i) is the

IB(i)th element on the diagonal of G̃B, and IB(·) is a function
to identify the index of yi in B. The studentized residual of
yi ∈ B is defined by

ri =
ε̂i

δ
√

1− g̃IB(i)

. (21)

Note that δ is assumed to be unknown. To obtain an estimate
for δ, the sum of square error (SSE) on B is calculated as
follows:

SSE = ε̂TB ε̂B = ỹT
B (I− G̃B)ỹB . (22)

The expectation of SSE is given by

E[SSE]

=trace
[
(I− G̃B)Cov[ỹB]

]
+ E[ỹB]

T (I− G̃B)E[ỹB]

=trace
[
(I− G̃B)δ

2I
]
+ (G̃B∆x̂)T (I− G̃B)(G̃B∆x̂) .

(23)

Since G̃B∆x̂ belongs to the space spanned by the columns
of G̃B and this space is orthogonal to the space spanned by
the columns of I− G̃B, we have

(I− G̃B)(G̃B∆x̂) = 0 . (24)

Therefore,

E[SSE] = trace
[
(I− G̃B)δ

2I
]
= δ2

n∑
k

λk , (25)

where λk, k ∈ 1, 2, · · · , s are the eigenvalues of I − G̃B. It
is known that I− G̃B has s−m eigenvalues taking 1 and m
eigenvalues taking 0. Therefore,

E[SSE] = (s−m)δ2 , (26)

and
√

SSE
s−m is the unbiased estimator of δ.

Replace δ in (21) with
√

SSE
s−m , and then the studentized

residual can be written by

ri =
ε̂i√

SSE
s−m

√
1− g̃IB(i)

=
ỹi − h̃IB(i)∆x̂√
ε̂T
B ε̂B
s−m

√
1− g̃IB(i)

, (27)

where h̃IB(i) is the IB(i)th row of H̃B. Finally, variables in
the original linear system in (1) can be recovered by doing the
inverse operation in (17) as follows:

ri =

√
wIB(i)yi −

√
wIB(i)hIB(i)∆x̂B√(

yB−HB∆x̂B

)T
WB

(
yB−HB∆x̂B

)
s−m

√
1− gIB(i)

, (28)

where wIB(i) is the IB(i)th element on the diagonal of WB =
Σ−1

B , hIB(i) is the IB(i)th row of HB, and gIB(i) is the
IB(i)th element on the diagonal of GB defined in (4). This
ends the proof of (5).

B. Jackknife Residual
For each measurement ỹi in the non-basic set O, the

difference between the predicted measurement and ỹi is given
by

ϵ̃i=h̃i∆x̂B − ỹi

=h̃i∆x̂B − (h̃i∆xB + ε̃i) ,
(29)
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where h̃i is re-constructed based on the OLS solution on B.
The reconstruction process is similar to that in the original
linear system, as shown in (9). Since ε̃ ∼ N (0, δ2), ∆x̂B is
the unbiased estimator of ∆x and has a Gaussian distribution.
The variance of ∆x̂B can be calculated by

Var[∆x̂B]=
(
H̃T

BH̃B

)−1

H̃T
BVar[ỹB]H̃B

(
H̃T

BH̃B

)−1

=
(
H̃T

BH̃B

)−1

H̃T
BVar[ε̃B]H̃B

(
H̃T

BH̃B

)−1

=
(
H̃T

BH̃B

)−1

δ2 .

(30)

ε̃i also has a Gaussian distribution N (0, δ2). Therefore, ϵ̃i is
Gaussian distributed, and its mean can be calculated by

E[ϵ̃i] = h̃iE[∆x̂B −∆xB]− E[ε̃i] = 0 , (31)

and its variance can be calculated by

Var[ϵ̃i]=h̃iVar[∆x̂B]h̃
T
i + Var[ε̃i]

=h̃i

(
H̃T

BH̃B

)−1

h̃T
i δ

2 + δ2 .
(32)

Then the jackknife residual is defined as the normalized ϵ̃i as
follows:

t̃i =
ϵ̃i

δ

√
h̃i

(
H̃T

BH̃B
)−1

h̃T
i + 1

. (33)

By replacing δ in (33) with
√

SSE
s−m and recovering the

variables in the original linear system in (1), the jackknife
residual can be written as

t̃i=

√
wiyi −

√
wihi∆x̂B

δ̂

√
1 + wihi

(
HT

BWBHB
)−1

hT
i

δ̂=

√(
yB −HB∆x̂B

)T
WB

(
yB −HB∆x̂B

)
s−m

,

(34)

where hi is defined in (9). This ends the proof of (8).

APPENDIX II
DELETION-BASED GREEDY SEARCH ALGORITHM

The deletion-based greedy-search algorithm removes the
measurement with the largest normalized residual at each step
[21]. Specifically, define Ξk as the measurement set at time
step k, and then the positioning solution with Ξk is given by
(utilizing WLS in an iterative approach)

∆x̂Ξk
=
(
HT

Ξk
WΞk

HΞk

)−1
HT

Ξk
WΞk

yΞk
(35a)

x̂Ξk
=x0 +∆x̂Ξk

, (35b)

where WΞk
= Σ−1

Ξk
is the weighting matrix. The subscript

Ξk in (35) indicates that the corresponding variable is defined
with respect to the set Ξk. The weighted sum of square error
(WSSE) is given by

WSSE = (yΞk
−HΞk

∆x̂Ξk
)TWΞk

(yΞk
−HΞk

∆x̂Ξk
) . (36)

With the Gaussian assumption ε ∼ N (0, δ2Σ) in Section II-
A and the fault-free assumption about Ξk, WSSE has a chi-
squared distribution with the degrees of freedom (DOF) of

nk −m, where nk is the size fo Ξk and m is the number of
unknown variables to be solved. If

WSSE > χ2−1

nk−m(α) , (37)

potential faults exist in Ξk, where α is the false alarm rate.
Then, for each measurement yi in Ξk, the normalized residual
is given by:

ri =
wi(yi − hi∆x̂Ξk

)2

1− wihi

(
HT

Ξk
WΞk

HΞk

)−1
hT
i

, (38)

where wi is the ith element on the diagonal of WΞk
, yi is

the ith element of yΞk
, and hi is the ith row of HΞk

. A time
complexity of O(n− s+ 1) is associated with this operation,
where s = 1, 2, · · · , n−(m+1) is the numbering of the current
step. Then, the algorithm removes the measurement with the
largest ri. The above process repeats until WSSE is lower
than the threshold, where a consistent set is found, or until the
number of remaining measurements is no larger than m + 1.
Therefore, the worst-case time complexity of the deletion-
based greedy search algorithm is given by

∑n−(m+1)
s=1 O(n−

s + 1) ≈ O(n2). Assuming that there are k < n faulty
measurements and the deletion-based greedy search algorithm
can exactly isolate these faults, then this algorithm will have
k iterations. The time complexity of the deletion-based greedy
search algorithm is now given by

∑k
s=1O(n−s+1) ≈ O(kn),

which increases with the increase of the number of faults k.

APPENDIX III
MORE RESULTS

This section shows the result of worldwide simulations
with the four-constellation setting, as listed in Table IX.
Specifically, Table X summarizes the rate of the three kinds
of events in this simulation, Fig. 6 compares the map of
post-isolation positioning errors for both methods, and Table
XI shows the statistics of the post-isolation positioning error
of all location-time combinations of both methods. Similar
conclusions can be drawn as those in Section IV.

TABLE IX: Parameters of worldwide simulations with four
constellations

Constellations Number of faults Fault magnitude Alpha

GPS, Galileo,
GLONASS, BEIDOU

12 [−50m,−25m]∪
[25m, 50m]

0.05

TABLE X: Isolation performance in four-constellation experi-
ment

Incrementally expanding Deletion-based greedy search

Event Exact Swamping Masking Exact Swamping Masking

Max 93.06 % 16.67 % 12.15% 88.54% 54.51% 0 %

Mean 84.86 % 10.09 % 4.09% 68.66% 31.31% 0 %

Min 72.92 % 5.56 % 0% 45.49% 11.46% 0 %
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Fig. 6: 99.5 percentile of the post-isolation positioning error
over the course of the day yielded by (a) the incrementally
expanding algorithm and (b) the deletion-based greedy search
algorithm in the worldwide simulation experiment with four
constellations.

TABLE XI: Statistics of the post-isolation positioning error
for all location-time combinations in the four-constellation
experiment

Incrementally expanding Deletion-based greedy search

Max Mean Min Max Mean Min

89.80 m 1.99 m 0.01m 176.33m 4.04m 0.01m
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